Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Bioconjug Chem ; 35(2): 187-202, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38318778

RESUMO

To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.


Assuntos
Doxorrubicina/análogos & derivados , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/tratamento farmacológico , Nanoconjugados/uso terapêutico , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
2.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240344

RESUMO

Anthracyclines, topoisomerase II enzyme poisons that cause DNA damage, are the mainstay of acute myeloid leukemia (AML) treatment. However, acquired resistance to anthracyclines leads to relapse, which currently lacks effective treatment and is the cause of poor survival in individuals with AML. Therefore, the identification of the mechanisms underlying anthracycline resistance remains an unmet clinical need. Here, using patient-derived primary cultures and clinically relevant cellular models that recapitulate acquired anthracycline resistance in AML, we have found that GCN5 (also known as KAT2A) mediates transcriptional upregulation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in AML relapse, independently of the DNA-damage response. We demonstrate that anthracyclines fail to induce DNA damage in resistant cells, owing to the loss of expression of their target enzyme, TOP2B; this was caused by DNA-PKcs directly binding to its promoter upstream region as a transcriptional repressor. Importantly, DNA-PKcs kinase activity inhibition re-sensitized AML relapse primary cultures and cells resistant to mitoxantrone, and abrogated their tumorigenic potential in a xenograft mouse model. Taken together, our findings identify a GCN5-DNA-PKcs-TOP2B transcriptional regulatory axis as the mechanism underlying anthracycline resistance, and demonstrate the therapeutic potential of DNA-PKcs inhibition to re-sensitize resistant AML relapse cells to anthracycline.


Assuntos
Proteína Quinase Ativada por DNA , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/uso terapêutico , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos , Recidiva , DNA , Proteínas de Ligação a Poli-ADP-Ribose
3.
Biomed Mater ; 19(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38181444

RESUMO

Glioblastoma (GBM) remains a challenging malignancy due to its aggressive nature and the lack of efficacious therapeutic interventions. Nanotechnology-based approaches exhibit promise in GBM treatment; however, the successful translation of these strategies from preclinical models to clinical settings is hindered by inefficient nanoparticle clearance from vital organs. Addressing this concern, we investigated the therapeutic potential of amrubicin (AMR) encapsulated within poly (lactic-co-glycolic acid) nanoparticles (AMR-PLGA-NPs) in combating temozolomide (TMZ) resistant GBM. The study demonstrated that AMR-PLGA-NPs exerted a pronounced inhibitory effect on the cellular viability and migratory capacity of TMZ-resistant GBM cells. Furthermore, these nanoparticles exhibited considerable efficacy in downregulating the PI3K/AKT signaling pathway, thereby inducing apoptosis specifically in TMZ-resistant glioma cells and glioma stem-like cells through the activation of PTEN. Notably,in vivoexperimentation revealed the ability of AMR-PLGA-NPs to traverse biological barriers within murine models. Collectively, these findings underscore the potential therapeutic utility of AMR-PLGA-NPs as a versatile nanoplatform for addressing the formidable challenges posed by GBM, particularly in mitigating drug resistance mechanisms. The study substantiates the stability and safety profile of AMR-PLGA-NPs, positioning them as a promising avenue for combating drug resistance in GBM therapeutics.


Assuntos
Antraciclinas , Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Antraciclinas/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Temozolomida/farmacologia
4.
ACS Infect Dis ; 10(2): 594-605, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38183662

RESUMO

The escalating mortality rate resulting from multidrug-resistant (MDR) bacteria has intensified the urgency for innovative antimicrobial agents. Currently, the antimicrobial activity of compounds is usually assessed by testing the minimum inhibitory concentration (MIC) on a standardized laboratory medium. However, such screening conditions differ from the in vivo environment, making it easy to overlook some antibacterial agents that are active in vivo but less active in vitro. Herein, by using tissue medium RPMI, we uncover that anthracyclines, especially mitoxantrone (MX), exhibit improved bacteriostatic and bactericidal effects against various MDR bacteria in host-like media. Transcriptome results reveal that LPS modification-related genes of bacterial membrane surfaces and metabolic genes are significantly down-regulated in RPMI media. Mechanistic studies demonstrate that MX leads to more substantial membrane damage, increased ROS production, and DNA damage in host-mimicking conditions. Furthermore, we demonstrate that MX and colistin exhibit strong synergistic effects against mcr-positive strains in host-mimicking media by disrupting iron homeostasis. In an experimental murine infection model, MX monotreatment demonstrates therapeutic efficacy in reducing bacterial burdens. Overall, our work suggests that mimicking the host condition is an effective strategy to identify new antimicrobial agents and highlights the therapeutic potential of anthracycline drugs in combating MDR pathogens.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Camundongos , Antibacterianos/farmacologia , Antraciclinas/farmacologia , Reposicionamento de Medicamentos , Anti-Infecciosos/farmacologia , Colistina/farmacologia , Bactérias
5.
ACS Nano ; 17(24): 24972-24987, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38093174

RESUMO

Tumor metastasis is an intricate multistep process regulated via various proteins and enzymes modified and secreted by swollen Golgi apparatus in tumor cells. Thus, Golgi complex is considered as an important target for the remedy of metastasis. Currently, Golgi targeting technologies are mostly employed in Golgi-specific fluorescent probes for diagnosis, but their applications in therapy are rarely reported. Herein, we proposed a prodrug (INR) that can target and destroy the Golgi apparatus, which consisted of indomethacin (IMC) as the Golgi targeting moiety and retinoic acid (RA), a Golgi disrupting agent. The linker between IMC and RA was designed as a hypoxia-responsive nitroaromatic structure, which ensured the release of the prototype drugs in the hypoxic tumor microenvironment. Furthermore, INR could be assembled with pirarubicin (THP), an anthracycline, to form a carrier-free nanoparticle (NP) by emulsion-solvent evaporation method. A small amount of mPEG2000-DSPE was added to shield the positive charges and improve the stability of the nanoparticle to obtain PEG-modified nanoparticle (PNP). It was proved that INR released the prototype drugs in tumor cells and hypoxia promoted the release. The Golgi destructive effect of RA in INR was amplified owing to the Golgi targeting ability of IMC, and IMC also inhibited the protumor COX-2/PGE2 signaling. Finally, PNP exhibited excellent curative efficacy on 4T1 primary tumor and its pulmonary and hepatic metastasis. The small molecular therapeutic prodrug targeting Golgi apparatus could be adapted to multifarious drug delivery systems and disease models, which expanded the application of Golgi targeting tactics in disease treatment.


Assuntos
Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Sistemas de Liberação de Medicamentos , Antibióticos Antineoplásicos/farmacologia , Nanopartículas/química , Hipóxia/tratamento farmacológico , Complexo de Golgi , Linhagem Celular Tumoral
6.
Ter Arkh ; 95(7): 560-567, 2023 Sep 29.
Artigo em Russo | MEDLINE | ID: mdl-38159006

RESUMO

AIM: To evaluate the effect of Sacubitril/Valsartan (S/V) on the functional status, systolic and diastolic function of the left ventricle (LV), tolerability of therapy and to determine predictors of its effectiveness in patients with cancer therapy-related heart failure (СTRHF). MATERIALS AND METHODS: Forty patients 58 [46; 65.5] years of age with HF associated with anthracycline-containing cancer therapy were enrolled. Clinical examination, echocardiography, and assessment of potassium and creatinine levels were performed at baseline and after 6 months of S/V therapy. RESULTS: NYHA functional class (FC) improvement was observed in 22 (64.7%) patients. Radiation therapy (RT) decreased (OR 0.091; 95% CI 0.01-0.83; p=0.03) while baseline low LV EF increased (OR 9.0; 95% CI 1.78-45.33; p=0.008) the odds of FC improvement. LV EF increased from 37.3 [30; 42.5] % to 45 [38; 48] % (p<0.0001) and exceeded 50% in 7 (20.6%) patients. The odds of LV EF recovery increased when S/V therapy was initiated ≤1 year after anthracycline therapy (OR 10.67; 95% CI 1.57-72.67; p=0.0016) and decreased in patients with the history of RT (OR 0.14; 95% CI 0.02-0.89; p=0.0037) and in patients over 58 years (OR 0.07; 95% CI 0.01-0.68; p=0.022). LV diastolic function improvement included E/e' descent from 13.6 [10; 18.3] to 8.9 [6.9; 13.7] (p=0.0005), and decrease in diastolic dysfunction grade in 18 (45%) patients (p=0.0001). No significant change in serum potassium (4.45 [4.2; 4.8] versus 4.5 [4.3; 4.8]; p=0.5) and creatinine (75.4 [67.6; 85.1] versus 75.5 [68.2; 98.3]; p=0.08) levels were observed. CONCLUSION: S/V therapy is associated with improvement of EF, systolic and diastolic LV function, demonstrates a favorable tolerability profile in patients with СTRHF. Lack of RT and low baseline LV EF increased the odds of LV EF improvement; lack of RT, early (≤1 year) start of treatment after discontinuation of anthracycline therapy, and age <58 years increased the odds of LV EF recovery.


Assuntos
Insuficiência Cardíaca , Neoplasias , Humanos , Pessoa de Meia-Idade , Creatinina , Tetrazóis/efeitos adversos , Valsartana/farmacologia , Valsartana/uso terapêutico , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Função Ventricular Esquerda , Combinação de Medicamentos , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Potássio/farmacologia , Potássio/uso terapêutico , Volume Sistólico , Neoplasias/tratamento farmacológico
7.
Int J Biol Sci ; 19(14): 4644-4656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781042

RESUMO

Anthracyclines are a class of conventionally and routinely used first-line chemotherapy drugs for cancer treatment. In addition to the direct cytotoxic effects, increasing evidence indicates that the efficacy of the drugs also depends on immunomodulatory effects with unknown mechanisms. Galectin-9 (Gal-9), a member of the ß-galactoside-binding protein family, has been demonstrated to induce T-cell death and promote immunosuppression in the tumor microenvironment. Here, we asked whether anthracycline-mediated immunomodulatory activity might be related to Gal-9. We found that combining doxorubicin with anti-Gal-9 therapy significantly inhibited tumor growth and prolonged overall survival in immune-competent syngeneic mouse models. Moreover, Gal-9 expression was increased in response to doxorubicin in various human and murine cancer cell lines. Mechanistically, doxorubicin induced tumoral Gal-9 by activating the STING/interferon ß pathway. Clinically, Gal-9 and p-STING levels were elevated in the tumor tissues of breast cancer patients treated with anthracyclines. Our study demonstrates Gal-9 upregulation in response to anthracyclines as a novel mechanism mediating immune escape and suggests targeting Gal-9 in combination with anthracyclines as a promising therapeutic strategy for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Galectinas , Neoplasias/tratamento farmacológico , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Microambiente Tumoral
8.
Xenobiotica ; 53(6-7): 507-514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753851

RESUMO

1. ABCB1 (P-glycoprotein, MDR1) is one of the most important transporter involved in cancer multi-drug resistance. It also plays a significant role in cancer resistance against anthracyclines, an anticancer group of drugs, including doxorubicin and daunorubicin. Several intracellular enzymes metabolise anthracyclines to carbonyl-reduced, hydroxy metabolites, which have impaired cytotoxic properties. However, metabolite efflux by ABCB1 transporter is not well characterised, while it may be the mechanism responsible for the metabolites' lack of activity.2. In this study recombinant ABCB1 ATPase transporter assay; anthracyclines accumulation assay in resistant cells overexpressing ABCB1; and molecular modelling were used to investigate anthracyclines: doxorubicin and daunorubicin and their carbonyl-reduced metabolites (doxorubicinol, daunorubicinol) susceptibility for ABCB1-dependent efflux.3. Based on the kinetics parameters of ATPase activity of ABCB1, it was found that daunorubicinol exerted an exceptionally high potential for being effluxed by the ABCB1 transporter. ABCB1 significantly affected the accumulation pattern of studied chemicals in resistant cancer cells. Doxorubicin and daunorubicinol accumulation were influenced by the activity of ABCB1 modulator - valspodar.4. Results indicate that ABCB1 activity affects not only anthracyclines but also their metabolites. Therefore crosstalk between the process of anthracyclines metabolism and metabolite efflux may be the mechanism of impairing anticancer properties of anthracyclines metabolites.


Assuntos
Antraciclinas , Neoplasias , Humanos , Adenosina Trifosfatases/metabolismo , Antraciclinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Daunorrubicina/farmacologia , Doxorrubicina/farmacologia
9.
Cell Biol Toxicol ; 39(6): 3255-3267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768392

RESUMO

Anthracycline antitumor agents, such as doxorubicin (DOX), are effective in the treatment of solid tumors and hematological malignancies, but anthracycline-induced cardiotoxicity (AIC) limits their application as chemotherapeutics. Dexrazoxane (DEX) has been adopted to prevent AIC. Using a chronic AIC mouse model, we demonstrated that DEX is insufficient to reverse DOX-induced cardiotoxicity. Although therapies targeting autophagy have been explored to prevent AIC, but whether novel autophagy inhibitors could alleviate or prevent AIC in clinically relevant models needs further investigation. Here, we show that genetic ablation of Atg7, a key regulator in the early phase of autophagy, protected mice against AIC. We further demonstrated that SAR405, a novel autophagy inhibitor, attenuated DOX-induced cytotoxicity. Intriguingly, the combination of DEX and SAR405 protected cells against DOX-induced cardiotoxicity in vivo. Using the cardiomyocyte cell lines AC16 and H9c2, we determined that autophagy was initiated during AIC. Our results suggest that inhibition of autophagy at its early phase with SAR405 combined with DEX represents an effective therapeutic strategy to prevent AIC.


Assuntos
Cardiotoxicidade , Doxorrubicina , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/metabolismo , Miócitos Cardíacos/metabolismo , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Autofagia , Apoptose , Estresse Oxidativo
10.
Farm. hosp ; 47(5): 183-189, Septiembre - Octubre 2023. tab, ilus
Artigo em Inglês, Espanhol | IBECS | ID: ibc-225605

RESUMO

Objetivo: en 2016 se publicaron las guías de la MASCC/ESMO que incorporaron los esquemas de antraciclinas como quimioterapia altamente emetógena (QAE) proponiendo la triple terapia antiemética, así como para los esquemas de carboplatino. Los objetivos fueron analizar el nivel de concordancia entre las guías y la profilaxis antiemética utilizada en el hospital de día de hematooncología, evaluar su efectividad y determinar el ahorro de la inclusión de netupitant/palonosetrón (NEPA) oral con dexametasona intravenosa (NEPAd) respecto a fosaprepitant con ondansetrón y dexametasona (FOD intravenosa). Método estudio observacional prospectivo registrando variables demográficas, esquema de quimioterapia recibido, localización tumoral, riesgo emetógeno del paciente, pauta antiemética prescrita, concordancia con guía MASCC/ESMO y su efectividad, utilización de medicación de rescate y registro de visitas a urgencias o ingresos por emesis.Se llevó a cabo un estudio farmacoeconómico de minimización de costes. Resultados se incluyeron 61 pacientes, 70% mujeres, mediana edad 60,5.Los esquemas de platino fueron más frecuentes en el periodo 1, siendo el 87,5% respecto al 67,6% en el periodo 2. Los esquemas con antraciclinas fueron del 21,6 y 10% respectivamente en cada periodo. Un 21,1% de las pautas antieméticas no coincidían con las recomendaciones MASCC/ESMO, siendo en su totalidad en el periodo 1. La puntuación de los cuestionarios de efectividad fue de protección total en el 90,9% en las náuseas agudas, del 100% en los vómitos agudos y en las náuseas retardadas, y del 72,7% en los vómitos retardados. La frecuencia de uso de medicación de rescate fue del 18,7% en el periodo 1 y no fue necesaria en el periodo 2.No se detectaron visitas a urgencias ni ingresos en ninguno de los periodos. El uso de NEPAd comportó una reducción del 28% de los costes con respecto al empleo de FOD. Conclusiones: ... (AU)


Objective: Latest MASCC/ESMO guidelines of the recommendations for the prophylaxis of acute and delayed emesis induced by moderately emetogenic chemotherapy was published in 2016 incorporating anthracycline schemes as highly emetogenic chemotherapy (HEC), proposing triple antiemetic therapy to control nausea and vomiting. Likewise, they recommend triple therapy for carboplatin. The objectives of this study were to analyze the degree of concordance between guidelines and antiemetic prophylaxis used in the Chemotherapy Outpatient Unit in patients undergoing treatment with HEC and carboplatin, to evaluate its effectiveness and to determine the savings due to the use of netupitant/palonosetron (NEPA) oral (or) with intravenous (iv) dexamethasone (NEPAd) compared to iv Fosaprepitant with ondansetron and dexamethasone (FOD iv).MethodsProspective observational study recording demographic variables, chemotherapy protocol, tumor location, patient emetogenic risk, antiemetic regimen prescribed, concordance with the MASCC/ESMO guideline, and effectiveness, evaluated by MASCC survey, use of rescue medication and visits to the Emergency Department or hospitalization due to emesis.A cost minimization pharmacoeconomic study was carried out. Results 61 patients were included; 70% women; median age 60.5. Platinum schemes were more frequent in period 1, being 87.5% compared to 67.6% in period 2. Anthracycline schemes were 21.6% and 10% respectively in each period.A 21.1% of the antiemetic regimens did not coincide with the MASCC/ESMO recommendations, being entirely in period 1. The score of the effectiveness questionnaires was total protection in 90.9% in acute nausea, from 100% in acute vomiting and delayed nausea, and 72.7% in delayed vomiting.The frequency of use of rescue medication was 18.7% in period 1 and was not necessary in period 2.No visits to the emergency room or admissions were detected in any of the periods. Conclusions: ...(AU)


Assuntos
Humanos , Masculino , Feminino , Idoso , Antieméticos/administração & dosagem , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Carboplatina/farmacologia , Antraciclinas/farmacologia , Guias de Prática Clínica como Assunto , Estudos Prospectivos , Custos e Análise de Custo
11.
J Med Chem ; 66(16): 11390-11398, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561481

RESUMO

The anthracycline anti-cancer drugs are intensely used in the clinic to treat a wide variety of cancers. They generate DNA double strand breaks, but recently the induction of chromatin damage was introduced as another major determinant of anti-cancer activity. The combination of these two events results in their reported side effects. While our knowledge on the structure-activity relationship of anthracyclines has improved, many structural variations remain poorly explored. Therefore, we here report on the preparation of a diverse set of anthracyclines with variations within the sugar moiety, amine alkylation pattern, saccharide chain and aglycone. We assessed the cytotoxicity in vitro in relevant human cancer cell lines, and the capacity to induce DNA- and chromatin damage. This coherent set of data allowed us to deduce a few guidelines on anthracycline design, as well as discover novel, highly potent anthracyclines that may be better tolerated by patients.


Assuntos
Antraciclinas , Neoplasias , Humanos , Antraciclinas/farmacologia , Antraciclinas/química , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos/química , Inibidores da Topoisomerase II , Cromatina , DNA/metabolismo , Neoplasias/tratamento farmacológico
12.
Mol Aspects Med ; 93: 101205, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515939

RESUMO

Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.


Assuntos
Antraciclinas , Neoplasias , Humanos , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antibióticos Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico
13.
Nat Commun ; 14(1): 4360, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468519

RESUMO

Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade/metabolismo , Cardiopatias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antraciclinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Oxirredutases/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/farmacologia
14.
Virus Res ; 334: 199164, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379907

RESUMO

Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 µM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antraciclinas/farmacologia , Antivirais/farmacologia , Antivirais/metabolismo
15.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175180

RESUMO

Anthracycline antibiotics (ANT) are among the most widely used anticancer drugs. Unfortunately, their use is limited due to the development of drug resistance and cardiotoxicity. ANT metabolism, performed mainly by two enzymes-aldo-keto reductase 1C3 (AKR1C3) and carbonyl reductase 1 (CBR1)-is one of the proposed mechanisms generated by the described effects. In this study, we evaluated the CBR1 inhibitory properties of ASP9521, a compound already known as potent AKR1C3 inhibitor. First, we assessed the possibility of ASP9521 binding to the CBR1 catalytic site using molecular docking and molecular dynamics. The research revealed a potential binding mode of ASP9521. Moderate inhibitory activity against CBR1 was observed in studies with recombinant enzymes. Finally, we examined whether ASP9521 can improve the cytotoxic activity of daunorubicin against human lung carcinoma cell line A549 and assessed the cardioprotective properties of ASP9521 in a rat cardiomyocytes model (H9c2) against doxorubicin- and daunorubicin-induced toxicity. The addition of ASP9521 ameliorated the cytotoxic activity of daunorubicin and protected rat cardiomyocytes from the cytotoxic effect of both applied drugs. Considering the favorable bioavailability and safety profile of ASP9521, the obtained results encourage further research. Inhibition of both AKR1C3 and CBR1 may be a promising method of overcoming ANT resistance and cardiotoxicity.


Assuntos
Antineoplásicos , Carbonil Redutase (NADPH) , Humanos , Ratos , Animais , Simulação de Acoplamento Molecular , Cardiotoxicidade , Antraciclinas/farmacologia , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Antineoplásicos/farmacologia , Antibacterianos
16.
Arq Bras Cardiol ; 120(5): e20220298, 2023.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37255127

RESUMO

BACKGROUND: The evidence supporting the use of renin-angiotensin-aldosterone system (RAAS) inhibitors and beta-blockers for the prevention of anthracycline-induced cardiomyopathy is controversial. OBJECTIVE: We performed a meta-analysis to assess the effectiveness of these drugs in preventing cardiotoxicity. METHODS: The meta-analysis included prospective, randomized studies in adults receiving anthracycline chemotherapy and compared the use of RAAS inhibitors or beta-blockers versus placebo with a follow-up of 6 to 18 months. The primary outcome was change in left ventricular ejection fraction (LVEF) during chemotherapy. Secondary outcomes were the incidence of heart failure, all-cause mortality, and changes in end-diastolic measurement. Heterogeneity was assessed by stratification and meta-regression. A significance level of p < 0.05 was adopted. RESULTS: The search resulted in 17 studies, totaling 1,530 patients. The variation (delta) in LVEF was evaluated in 14 studies. Neurohormonal therapy was associated with a lower delta in pre- versus post-therapy LVEF (weighted mean difference 4.42 [95% confidence interval 2.3 to 6.6]) and higher final LVEF (p < 0.001). Treatment resulted in a lower incidence of heart failure (risk ratio 0.45 [95% confidence interval 0.3 to 0.7]). There was no effect on mortality (p = 0.3). For analysis of LVEF, substantial heterogeneity was documented, which was not explained by the variables explored in the study. CONCLUSION: The use of RAAS inhibitors and beta-blockers to prevent anthracycline-induced cardiotoxicity was associated with less pronounced reduction in LVEF, higher final LVEF, and lower incidence of heart failure. No changes in mortality were observed. (CRD PROSPERO 42019133615).


FUNDAMENTO: As evidências que embasam o uso de inibidores do sistema-renina-angiotensina aldosterona (SRAA) e betabloqueadores para prevenção de cardiomiopatia induzida por antraciclinas são controversas. OBJETIVO: Realizamos uma metanálise para avaliar a eficácia desses medicamentos na prevenção da cardiotoxicidade. MÉTODOS: A metanálise incluiu estudos prospectivos e randomizados com adultos submetidos à quimioterapia com antraciclina e comparou o uso de terapias SRAA ou betabloqueadores versus placebo com seguimento de 6 a 18 meses. O desfecho primário foi alteração da fração de ejeção do ventrículo esquerdo (FEVE) durante a quimioterapia. Os desfechos secundários foram: a incidência de insuficiência cardíaca, mortalidade por todas as causas e alterações na medida do diâmetro diastólico final. A avaliação da heterogeneidade foi realizada por estratificação e meta-regressão. O nível de significância adotado foi p < 0,05. RESULTADOS: A busca resultou em 17 estudos, totalizando 1.530 pacientes. A variação (delta) da FEVE foi avaliada em 14 estudos. A terapia neuro-hormonal foi associada a um menor delta na FEVE pré-terapia versus pós-terapia (diferença média ponderada 4,42 [intervalo de confiança de 95% 2,3 a 6,6]) e maior FEVE final (p < 0,001). O tratamento resultou em menor incidência de insuficiência cardíaca (risk ratio 0,45 [intervalo de confiança de 95% 0,3 a 0,7]). Não houve efeito na mortalidade (p = 0,3). Para a análise da FEVE, foi documentada heterogeneidade substancial, não explicada pelas variáveis exploradas no estudo. CONCLUSÃO: O uso de inibidores do SRAA e betabloqueadores para prevenção da cardiotoxicidade induzida por antraciclinas foi associado a redução menos pronunciada da FEVE, maior FEVE final e menor incidência de insuficiência cardíaca. Não foram observadas alterações na mortalidade. (CRD PROSPERO 42019133615).


Assuntos
Insuficiência Cardíaca , Sistema Renina-Angiotensina , Adulto , Humanos , Volume Sistólico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Função Ventricular Esquerda , Antraciclinas/farmacologia , Estudos Prospectivos , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Antibióticos Antineoplásicos/efeitos adversos , Insuficiência Cardíaca/tratamento farmacológico
17.
ACS Chem Biol ; 18(6): 1315-1323, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37200590

RESUMO

The combination of doxorubicin (Adriamycin) and cyclophosphamide, referred to as AC chemotherapy, is commonly used for the clinical treatment of breast and other cancers. Both agents target DNA with cyclophosphamide causing alkylation damage and doxorubicin stabilizing the topoisomerase II-DNA complex. We hypothesize a new mechanism of action whereby both agents work in concert. DNA alkylating agents, such as nitrogen mustards, increase the number of apurinic/apyrimidinic (AP) sites through deglycosylation of labile alkylated bases. Herein, we demonstrate that anthracyclines with aldehyde-reactive primary and secondary amines form covalent Schiff base adducts with AP sites in a 12-mer DNA duplex, calf thymus DNA, and MDA-MB-231 human breast cancer cells treated with nor-nitrogen mustard and the anthracycline mitoxantrone. The anthracycline-AP site conjugates are characterized and quantified by mass spectrometry after NaB(CN)H3 or NaBH4 reduction of the Schiff base. If stable, the anthracycline-AP site conjugates represent bulky adducts that may block DNA replication and contribute to the cytotoxic mechanism of therapies involving combinations of anthracyclines and DNA alkylating agents.


Assuntos
Antraciclinas , Bases de Schiff , Humanos , Antraciclinas/farmacologia , Bases de Schiff/farmacologia , DNA/genética , Dano ao DNA , Inibidores da Topoisomerase II , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos , Alquilantes , Ciclofosfamida , Reparo do DNA , Adutos de DNA
18.
Sci Transl Med ; 15(693): eadf1147, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099632

RESUMO

Beta-adrenergic blockade has been associated with improved cancer survival in patients with triple-negative breast cancer (TNBC), but the mechanisms of these effects remain unclear. In clinical epidemiological analyses, we identified a relationship between beta-blocker use and anthracycline chemotherapy in protecting against TNBC progression, disease recurrence, and mortality. We recapitulated the effect of beta-blockade on anthracycline efficacy in xenograft mouse models of TNBC. In metastatic 4T1.2 and MDA-MB-231 mouse models of TNBC, beta-blockade improved the efficacy of the anthracycline doxorubicin by reducing metastatic development. We found that anthracycline chemotherapy alone, in the absence of beta-blockade, increased sympathetic nerve fiber activity and norepinephrine concentration in mammary tumors through the induction of nerve growth factor (NGF) by tumor cells. Moreover, using preclinical models and clinical samples, we found that anthracycline chemotherapy up-regulated ß2-adrenoceptor expression and amplified receptor signaling in tumor cells. Neurotoxin inhibition of sympathetic neural signaling in mammary tumors using 6-hydroxydopamine or genetic deletion of NGF or ß2-adrenoceptor in tumor cells enhanced the therapeutic effect of anthracycline chemotherapy by reducing metastasis in xenograft mouse models. These findings reveal a neuromodulatory effect of anthracycline chemotherapy that undermines its potential therapeutic impact, which can be overcome by inhibiting ß2-adrenergic signaling in the tumor microenvironment. Supplementing anthracycline chemotherapy with adjunctive ß2-adrenergic antagonists represents a potential therapeutic strategy for enhancing the clinical management of TNBC.


Assuntos
Antraciclinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Neoplasias de Mama Triplo Negativas/genética , Fator de Crescimento Neural/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores Adrenérgicos/uso terapêutico , Microambiente Tumoral
19.
BMC Cancer ; 23(1): 376, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098488

RESUMO

BACKGROUND: Cancers harboring spliceosome mutations are highly sensitive to additional perturbations on the spliceosome that leads to the development of onco-therapeutics targeting the spliceosome and opens novel opportunities for managing aggressive tumors lacking effective treatment options such as triple negative breast cancers. Being the core spliceosome associated proteins, SNRPD1 and SNRPE have been both proposed as therapeutic targets for breast cancer management. Yet, their differences regarding their prognostic and therapeutic use as well as roles during carcinogenesis are largely unreported. METHODS: We conducted in silico analysis at gene expression and genetic levels to differentiate the clinical relevance of SNRPD1 and SNRPE, and explored their differential functionalities and molecular mechanistic associations with cancer in vitro. RESULTS: We showed that high SNRPD1 gene expression was prognostic of poor breast cancer survival whereas SNRPE was not. The SNRPD1 expression quantitative trait loci, rs6733100, was found independently prognostic of breast cancer survival using TCGA data. Silencing either SNRPD1 or SNRPE independently suppressed the growth of breast cancer cells, but decreased migration was only observed in SNRPD1-silenced cells. Knocking down SNRPD1 but not SNRPE triggers doxorubicin resistance in triple negative breast cancer cells. Gene enrichment and network analyses revealed the dynamic regulatory role of SNRPD1 on cell cycle and genome stability, and the preventive role of SNRPE against cancer stemness that may neutralize its promotive role on cancer cell proliferation. CONCLUSION: Our results differentiated the functionalities of SNRPD1 and SNRPE at both prognostic and therapeutic levels, and preliminarily explained the driving mechanism that requires additional explorations and validations.


Assuntos
Antraciclinas , Neoplasias de Mama Triplo Negativas , Humanos , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Mama/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Prognóstico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
20.
Toxicol Appl Pharmacol ; 468: 116531, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088304

RESUMO

Cancer survivors who received chemotherapy, such as the anthracycline doxorubicin (DOX), have an increased risk of developing complications later in life, including the development of chronic metabolic diseases. Although the etiology of this increased risk for late metabolic complications in cancer survivors is poorly understood, a causal role of therapy-induced senescent cells has been suggested. To study the role of cellular senescence in chemotherapy-induced metabolic complications, young adult female low-density lipoprotein receptor-deficient (Ldlr-/-)-p16-3MR mice, in which p16Ink4a-positive (p16Ink4a+) senescent cells can be genetically eliminated, were treated with four weekly injections of DOX (2.5 mg/kg) followed by a high-fat high-cholesterol diet for 12 weeks. While DOX treatment induced known short-term effects, such as reduction in body weight, gonadal fat mass, and adipose tissue inflammation, it was not associated with significant long-term effects on glucose homeostasis, hepatic steatosis, or atherosclerosis. We further found no evidence of DOX-induced accumulation of p16Ink4a+-senescent cells at 1 or 12 weeks after DOX treatment. Neither did we observe an effect of elimination of p16Ink4a+-senescent cells on the development of diet-induced cardiometabolic complications in DOX-treated mice. Other markers for senescence were generally also not affected except for an increase in p21 and Cxcl10 in gonadal white adipose tissue long-term after DOX treatment. Together, our study does not support a significant role for p16Ink4a+-senescent cells in the development of diet-induced cardiometabolic disease in young adult DOX-treated female Ldlr-/- mice. These findings illustrate the need of further studies to understand the link between cancer therapy and cardiometabolic disease development in cancer survivors.


Assuntos
Doenças Cardiovasculares , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos , Feminino , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/farmacologia , Senescência Celular , Doxorrubicina/toxicidade , Antraciclinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...